Fin Amin

Email: samin2@ncsu.edu Website: https://FinAminToastCrunch.github.io/ Last Updated: January 7, 2025 US Citizen (Security Clearance in Progress)

Google Scholar

MISSION STATEMENT

I am passionate about making education more accessible and inclusive. To achieve this, I aim to be an academic after finishing my doctoral studies.

During my time at NC State, I wanted to enrich my knowledge beyond what I was learning in class and within my advisor's lab. I collaborated with two additional labs: the low-resource computing lab under Prof. Jung-Eun Kim in the CS department and Sozzani lab under Prof. Ross Sozzani in the Microbial Biology department. I concurrently produced research for all three labs while balancing my responsibilities as a student, mentor, teaching assistant, and research/grant proposal writer.

Similarly, I wanted to make the most of my time in MA. In addition to working full time at MIT LL, I collaborated with two labs: MIT CSAIL'S CLEAR Lab under Prof. Andreea Bobu and Harvard's Edge Computing Lab under Prof. Vijay Reddi.

RESEARCH INSTITUTIONS

Massachusetts Institute of Technology Lincoln Laboratory

Lexington, MA

Research Scientist (CO-OP) in Human Health and Performance Systems

Feb 2024 - Ongoing

- o Developing computer-vision algorithms for brain mapping based on 3D confocal microscopy data.
- Working on the next generation of AI Guide, an AI-guided emergency surgical tool.
- o Introducing meta-learning for self-supervised pre-training for tomography.
- Investigating how to reduce energy consumption in mobile AI systems.
- Estimating the intents and behaviors of health-care professionals via control theoretic and inverse reinforcement learning frameworks.

North Carolina State University

Raleigh, NC

Ph.D Student in Electrical Engineering advised by Prof. Paul D. Franzon

Aug 2021 - Ongoing

- o Dissertation Topic: Reinforcement Learning and Language Models for 3D Floorplanning in Elec. Design Automation
- Research Interests: Neural Network {Model Calibration, Pruning, Knowledge Distillation, Unsupervised Domain Adaptation}, Language Model {Multimodality, Self-Supervision, Fine-tuning}, Generative Diffusion Models and Graph Neural Networks.
- o GPA: 3.85/4.00
- o Mentor to four Ph.D students.
- Funded the research of three other Ph.D students.

The University of Texas at Austin

Austin, TX

Bachelor of Science in Electrical Engineering

Aug 2016-May 2021

- o Primary Interest: Data Science, Digital Image/Video Processing, Digital Signal Processing
- o Computational Science and Engineering Program
- Terry Foundation Scholar (full tuition and housing)

Earned Research Funding: \$313,900

CISCO Research 08/16/2024

\$75,000 Rapid 3DIC Thermal Modeling

- o Proposed a novel machine learning approach for thermal modeling in 3DICs, focusing on addressing the challenges of heat dissipation across multiple stacked layers.
- o Introduced the concept of using a diffusion model to transform power maps into high-resolution heat maps, aiming to improve accuracy and efficiency over traditional methods.
- o Second author, written with Prof. Franzon and a labmate.

LAD Student Travel Grant

06/28/2024

\$900 to present research at LLM-Aided Design

- Presented research on a novel LLM adaptation technique to over 200 researchers, industry members and tech startups.
- Released a benchmark for LLM adaptation on microelectronic reasoning.

CAEML Research Award

04/28/2024

\$70,000 for the development of Natural Language Optimization Models for PCBs and Analog ICs

- o Motivated the development of LLMs for a query-based optimizer focused on packaging and on-chip interconnect problems.
- Proposed support for multimodal inputs and outputs, including eye diagrams, waveform figures, and actual layouts.

- o Demonstrated proof of concept via retrieval augmented generation demo.
- o Co-first author with Prof. Franzon.

Qualcomm Innovation Fellowship

05/03/2023

\$100,000 for the development of Reinforcement Learning Agents for 3D Floorplanning in EDA

- Proposed and developed proof of concepts of novel RL algorithms for floorplanning.
- Motivated research by identifying critical drawbacks in the SOTA.
- o Presented and defended research over 3 rounds of interviews.
- o Co-first author with a lab mate. Supervised by Prof. Franzon and Prof. Xiaorui Liu.

CAEML Research Award

04/11/2023

\$68,000 for the development of Siamese-Graph Neural Networks for Circuit Graph Isomorphism Detection

- Proposed and developed a novel SGNN architecture to address the circuit graph isomorphism detection problem.
- o Demonstrated proof of feasibility and scalability for large graphs.
- o First author, supervised by Prof. Franzon.

PUBLICATIONS/UNDER REVIEW/UNDER REVISION

Topology-Aware Deep Supervision for Axon Centerline Detection

To appear at ISBI '25. Submitted as co-first author. Supervised by MIT-LL, MBF Bioscience and Univ. of Florida

- Addressed the issue of limited annotations for axon centerline detection data in brain mapping.
- $\circ\,$ Improved performance over baseline despite using only 66% of the annotations.
- Maintained performance for fully-annotated setting.

Mobile-Optimized Real-Time Vessel Segmentation for Ultra-Sound Guided Surgery

Published as second author in High Performance Extreme Computing (HPEC '24). Supervised by MIT-LL

- o Investigated various pruning/quantization techniques for real-time image segmentation of human vessels.
- o Contributed to writing a custom application for evaluating performance on a mobile AI system.
- Motivated the processing of tomographic segmentation algorithms from a discrete computer to a mobile AI system in the next generation of AI Guide.

Large Reasoning Models for 3D Floorplanning in EDA

Under revision, submitted as first author. Supervised by Qualcomm Fellowship and Prof. Franzon

- Developed an auto-regressive decision-making model to optimize 3D IC floorplanning.
- Implemented an architecture that integrates sequence-to-sequence reinforcement learning algorithms, enhancing the model's ability to reason over large discrete action spaces.
- Achieved notable improvements in sample efficiency by incorporating non-expert trajectories.
- Evaluated the model against the SOTA ML approach, demonstrating superior performance in reducing wirelength and reasoning over multiple objectives.

The Over-Certainty Phenomenon

Under review at AAAI '25, submitted as first author, supervised by Prof. Jung-Eun Kim

- o Introduced a novel memory-efficient unsupervised domain adaptation algorithm (UDA) which improves calibration.
- o Identified key issues in state-of-the-art UDA algorithms which harm model calibration.
- Retained comparable accuracy to SOTA.

Can Low-Rank Knowledge Distillation be Useful for Microelectronic Reasoning?

Published as co-first author, LLM-Aided Design (LAD '24)

- Presented empirical results on the feasibility of using offline LLMs in EDA.
- Evaluated Llama-2-7B's performance as a microelectronics Q&A expert, focusing on its reasoning and problem-solving abilities.
- Introduced a novel LLM adaptation technique, low-rank knowledge distillation (LoRA-KD).
- Released an evaluation benchmark to support future research.

Optimal Brain Dissection

Published as first author in BioInspired Processing (BIP '23), supervised by Sozzani Lab and USDA

- Won Best Paper award.
- Introduced a technique for feature-importance determination that exploits pruning algorithms.
- o Developed the dense autoencoder, a new autoencoder architecture for reducing reconstruction error in -omics data.
- Outperformed the de facto gene regulatory network with respect to explaining gene expressions.

DepthGraphNet

Published as first author in Machine Learning for Computer Aided Design (MLCAD '23)

- Investigated the use of siamese-graph neural networks for circuit graph isomorphism (CGI) detection.
- o Empirically demonstrated logarithmic run-time complexity with respect to graph size.

- o Outperformed all other classical and neural methods in CGI detection accuracy.
- Introduced theorems for the optimal architecture of GNNs for CGI detection.

Network Inference Approach for Phosphoproteomics

Published as second author in Methods in Molecular Biology (MIMB vol. 2690), supervised by Sozzani Lab

- Described methods to statistically analyze label-free phosphoproteomic data and infer post-transcriptional regulatory networks over time.
- Used the Bayesian Dirichlet Equivalent Uniform to inference underlying latent relationships between variables.

IN PREPARATION (FIRST-AUTHOR-LEVEL EFFORT)

Gaslighting Robots to Generalize Human [REDACTED]

Supervised by Prof. Bobu of MIT CLEAR Lab

• Work involving language and human robot interaction.

Just Go With The (Optical) Flow!

Supervised by MIT LL

• Work involving improving tomography algorithms via optical flow.

[REDACTED]

Supervised by MIT LL

• Work involving meta learning and tomography.

IN PREPARATION (COAUTHOR-LEVEL EFFORT OR SUPERVISION)

Is This Worth Asking?

Supervised by Prof. Bobu of MIT CLEAR Lab

• Work involving understanding human effort answering questions.

A Domain-Specific Q&A Dataset for Computer Architecture

Preprint. Supervised by Harvard Edge Computing Lab

- Developed a Q&A dataset for benchmarking LLMs in computer architecture.
- o Assessed LLMs, identifying gaps in systems topics like memory and interconnects.
- o Proposed a roadmap to enhance LM reasoning and design capabilities.

Faster Subgraph Matching to Detect IP Theft in Designs

Supervised by Prof. Franzon

 $\circ~$ Work involving the design of custom subgraph representations for hashing.

Large Language Optimization Model for Electronic Design

Supervised by Prof. Franzon

• Work involving the design of a multi-modal agent which interfaces with optimization algorithms.

Diffusion Models for Rapid 3DIC Thermal Modeling

Supervised by Prof. Franzon

• Work involving the design of a conditional diffusion model which estimates the thermal properties of 3DICs.

Professional Service

- Each year at NCSU, the incoming cohort of ECE Ph.D students watch a video named *How to Succeed Doing a Ph.D in ECE*. In this presentation, I am used as an example of a successful Ph.D student.
- Reviewer for Neurips Workshop on Foundation Models for Science (FM4Science 2024).
- Contributor to Machine Learning Systems: Principles and Practices of Engineering Artificially Intelligent Systems, the textbook used for Harvard's CS249R (a course on TinyML).
- Contributor to Tensorflow Probability, SciKit Learn, and Deep Robust python libraries.
- Director of NC State Community Affairs for ECE Graduate Students Association (2021-2022).
- Organized NC State ECE Research Symposium January 28, 2022.
- Organized NC State TEDx Talk with Analog Devices, March 7, 2022.
- Member of UT Austin IEEE Robotics and Automation Society.
- Director of Student Affairs for UT Austin Planet Longhorn (International Students Org) (2020-2021).

Teaching

ECE 220 Analytical Foundations of ECE

Raleigh, NC

Teaching Assistant for North Carolina State University

Aug 2022 - May 2023

- Taught a sophomore-level course on circuit theory, control, differential equations and communication systems.
- o Supervised weekly labs which introduced students to MATLAB.
- o Graded homework and exams.
- Gave career advice to aspiring engineers.

ECE 301 Linear Systems and Signals

Raleigh, NC

Aug 2021 - May 2022

Teaching Assistant for North Carolina State University

- Taught a junior level course on linear systems and signals.
- Wrote exams and lead recitation twice a week.
- o Taught students introductory machine learning in MATLAB.
- o Graded homework and exams.
- Received outstanding feedback from my students.

Signal Processing and Data Science Tutor

Varsity Tutors

Austin, TX

Feb 2021 - July 2021

- o Tutored undergraduates in data science, linear systems and signals
- o Taught introductory classes in Java and Python
- \circ 4.9/5.0 stars (top 10% of all tutors on platform)

RESEARCH TALKS AND CLINICS

- MLCAD talk on Large Reasoning Models for 3D Hard Macro Placement. 09/11/2024
- Qualcomm Innovation Fellowship invited talk on Large Reasoning Models for 3D Floorplanning. 07/30/2024
- LLM-Aided Design talk on Low-Rank Knowledge Distillation for LLMs. 06/29/2024
- MIT-LL clinic on Axon centerline detection using 3D-UNets. 05/18/2024
- BioInspired Processing talk on Optimal Brain Dissection. 11/29/2023
- MLCAD talk on Siamese-Graph Neural Networks for Circuit Graph Isomorphism Detection. 09/12/2023

TECHNICAL SKILLS

- Extremely experienced with PyTorch and TensorFlow machine learning frameworks.
- Daily usage of Python. Skilled with Java¹ and L^AT_EX.
- $\bullet\,$ Seasoned with libraries such as OpenCV, PIL, sci-kit-image, Gym and PyBullet.
- Skilled at digital {tomography, image, video, voxel} processing. Strong background in applied reinforcement learning, pattern recognition, detection/estimation theory and Bayesian optimization.

EMPLOYMENT

Smith and Nephew

Austin, TX

 $CO ext{-}OP ext{:}\ Real ext{-}Time\ FootSwitch\ Demultiplexer}$

May 2019 - Dec 2019

- Created a surgical device to demultiplex signals from a universal footswitch to numerous soft tissue ablation and coagulation systems.
- o All signals (analog, digital, RS-485) sent and received are galvanically isolated to meet medical safety requirements.

¹I first started learning Java at age 14 while in high school. At age 16, I founded our high school's competitive CS team and our robotics team. At age 17, our robotics team made it to the national competition under my leadership.

Undergraduate Projects

Deep Framerate Upscaling

Undergraduate Computational Science and Engineering Research Certificate Project, under Prof. Al Bovik

- Created a deep learning architecture to interpolate frames in videos to increase framerate.
- Modified a Pix2Pix Conditional Generative Adversarial Network to predict a frame which would be present between two given frames.
- Researched methods to reduce the smearing/ghosting artifacts traditionally associated with framerate upscaling.
- Utilized extensive signal processing theory on the spatial and temporal attributes of videos to (unsuccessfully) create a better loss function.

Parallel Neural Networks in OpenMP and MPI

Parallel Compute Final Project

- Worked in a team of two to create a deep neural network to train on the MNIST handwritten digits dataset from scratch in C++ for serial execution for baseline performance metric.
- Re-implemented the same network in Open Multi-Processing and Message Passing Interface to show speed up with various network sizes.
- Won Best Project Award.

EmotionNet: Autonomous Body Language Assessment

Project manager for Honors Senior Design supervised by Prof. Al Bovik

- Created computer vision/image processing algorithms for dataset feature extraction such as blurry image detector, predominant face identifier, Haar Cascade Classifier, and MTCNN hyperparameter optimizer.
- o Created a deep network based on VGG16 for facial emotion classification and encoding.
- Utilized ResNet18 to classify and encode body-posture and pose.
- Created a recurrent neural network decoder using LSTM to establish spatio-temporal relationships between facial emotions, pose, and posture with human body language.