Fin Amin

Website: https://FinAminToastCrunch.github.io/Google Scholar

Research Institutions

• Massachusetts Institute of Technology Lincoln Laboratory • Student Technical Staff in Human Health and Performance Systems	Lexington, MA Feb 2024 - Ongoing
 Developing computer-vision algorithms for brain mapping based on 3D confocal microscopy data Investigating how to reduce energy consumption in mobile image-segmentation systems to improceed and surgical tool 	a. ove the AI Guide, an
 Introducing meta-learning for self-supervised pre-training of tomography foundation models. Estimating the intents and behaviors of health-care professionals via control theoretic and inversional frameworks. 	se reinforcement learning
 North Carolina State University Ph.D Student in Electrical Engineering advised by Prof. Paul Franzon Aug 2021 - on sabbatical as of Jan 2024 Dissertation Topic: Reinforcement Learning, Graphs and Language Models for Electronic Design Automation Research Interests: Neural Network {Model Calibration, Pruning, Knowledge Distillation, Unsupervised Domain Adaptation}, Language Model {Multimodality, Fine-tuning}, Diffusion Models and Graph Networks. 	
 The University of Texas at Austin Bachelor of Science in Electrical Engineering Primary Interest: Data Science, Digital Image/Video Processing, Digital Signal Processing 	Austin, TX <i>Aug 2016-May 2021</i>
• Computational Science and Engineering Research Program	

• Terry Foundation Scholar (full tuition and housing)

Collaboration Timeline

My timeline of research collaborations across multiple institutions. At NCSU, concurrently I worked in three different labs in ECE, CS, and Microbiology, balancing research, mentoring, teaching, and grant writing. Later, while working at MIT Lincoln Laboratory, I again concurrently collaborated with researchers at MIT CSAIL and Harvard SEAS.

RESEARCH FUNDING CONTRIBUTIONS: \$313,000

CISCO Research

- \$75,000 Rapid 3DIC Thermal Modeling
 - $\circ~^1$ Proposed a diffusion model for transforming power maps into high-resolution heat maps, improving accuracy over traditional methods.
 - $\circ~$ Co-wrote the proposal with Prof. Franzon and a lab mate.

CAEML Research Award

\$70,000 Natural Language Optimization Models for PCBs and Analog ICs

 1 I had significant technical contribution to these grants/fellowships. They were earned with Prof. Franzon as the PI.

Page 1 of 4

08/16/2024

04/28/2024

Co-Lead Contributor

Co-Author

- \circ Developed research vision and methodology for using LLMs in multi-modal query-based optimization.
- $\circ~$ Co-led proposal writing with Prof. Franzon; produced technical preview.

Qualcomm Innovation Fellowship

- \$100,000 Reinforcement Learning for 3D Floorplanning in EDA
 - $\circ~$ Proposed and defended novel RL approaches for floor planning over three rounds of evaluation.
 - $\circ~$ Co-led proposal with a lab mate; supervised by Prof. Franzon and Prof. Xiaorui Liu.

CAEML Research Award

- \$68,000 Siamese-Graph Neural Networks for Circuit Graph Isomorphism Detection
 - Developed core SGNN architecture and research methodology.
 - $\circ~$ Wrote the proposal and developed a technical preview; supervised by Prof. Franzon.

IN PREPARATION (FIRST-AUTHOR-LEVEL EFFORT)

Motivation-Guided Feature Generalization for Inverse Reinforcement Learning

Supervised by Prof. Bobu of MIT CSAIL's CLEAR Lab

 $\circ~$ Work involving language and human robot interaction.

[REDACTED]

- Supervised by MIT LL
 - $\circ~$ Work involving HRI, optimal control and estimation theory.

PUBLICATIONS/UNDER REVIEW/PREPRINTS

The Over-Certainty Phenomenon

- Under review. First author. Supervised by Prof. Jung-Eun Kim
 - $\circ~$ Identified a concerning trend in the design of state-of-the-art TTA algorithms which harm model calibration.
 - Introduced a novel test-time adaptation algorithm (TTA) which improves calibration.
 - Retained comparable accuracy to SOTA.

Just Go With The (Optical) Flow!

- Published IEEE EMBC '25. First author. Supervised by MIT LL
 - Developed an optical flow-based approach to enhance axon centerline detection and tracing in 3D microscopy data.
 - Demonstrated that interpreting volumetric imaging data as sequential frames improves spatial feature extraction for neuron structure identification.

A Domain-Specific Q&A Dataset for Computer Architecture

- Published in IEEE CAL. Contributing author. Supervised by Harvard Edge Computing Lab
 - $\circ~$ Developed a Q&A dataset for benchmarking LLMs in computer architecture.
 - Assessed LLMs, identifying gaps in systems topics like memory and interconnects.
 - Proposed a roadmap to enhance LM reasoning and design capabilities.

Topology-Aware Deep Supervision for Axon Centerline Detection

- Published in IEEE ISBI '25. Co-first author. Supervised by MIT LL, MBF Bioscience, and Univ. Central Florida
 - Addressed the issue of limited annotations for axon centerline detection data in brain mapping.
 - $\circ~$ Improved performance over baseline despite using only 66% of the annotations.
 - Maintained performance for fully-annotated setting.

Mobile-Optimized Real-Time Vessel Segmentation for Ultra-Sound Guided Surgery

- Published in IEEE HPEC '24. Second author. Supervised by MIT LL
 - \circ Investigated various pruning/quantization techniques for real-time image segmentation of human vessels.
 - Contributed to writing a custom application for evaluating performance on a mobile AI system.
 - Motivated the processing of tomographic segmentation algorithms from a discrete computer to a mobile AI system in the next generation of AI Guide.

Addressing Large Action Spaces in 3D Floorplanning via Spatial Generalization

Under review. First author. Supervised by Qualcomm Fellowship and Prof. Franzon

- $\circ~$ Investigated continuous action representations for 3D floor planning to improve scalability and spatial generalization.
- Developed a decision-transformer-based model that reasons over continuous placements and discretizes actions only at inference.
- Demonstrated that spatial inductive biases enable learning from non-expert and random trajectories.
- Can Low-Rank Knowledge Distillation be Useful for Microelectronic Reasoning?
- Published in IEEE/ACM LAD '24. Co-first author. Supervised by Prof. Franzon
 - Introduced a novel LLM adaptation technique, low-rank knowledge distillation (LoRA-KD).

05/03/2023Lead Contributor

04/11/2023 Lead Contributor

- Evaluated Llama-2-7B's performance as a microelectronics Q&A expert, focusing on its reasoning and problem-solving abilities.
- $\circ~$ Released an evaluation benchmark to support future research.

Optimal Brain Dissection

- Published in IEEE BIP '23. First author. Supervised by Sozzani Lab and USDA
 - Won Best Paper award.
 - Introduced a technique for feature-importance determination that exploits pruning algorithms.
 - Outperformed the *de facto* gene regulatory network with respect to explaining gene expressions.

DepthGraphNet

- Published in IEEE/ACM MLCAD '23. First author. Supervised by Prof. Franzon
 - Investigated the use of siamese-graph neural networks for circuit graph isomorphism (CGI) detection.
 - Empirically demonstrated logarithmic run-time complexity with respect to graph size.
 - $\circ~$ Outperformed all other classical and neural methods in CGI detection accuracy.

Network Inference Approach for Phosphoproteomics

- Published in Springer MIMB vol. 2690. Second author. Supervised by Sozzani Lab
 - Described methods to statistically analyze label-free phosphoproteomic data and infer post-transcriptional regulatory networks over time.
 - Used the Bayesian Dirichlet Equivalent Uniform to inference underlying latent causal relationships between variables.

IN PREPARATION (CONTRIBUTER-LEVEL EFFORT OR SUPERVISION)

Is This Worth Asking?

Supervised by Prof. Bobu of MIT CLEAR Lab

 $\circ~$ Work involving understanding human effort answering questions.

Large Language Optimization Model for Electronic Design

- Supervised by Prof. Franzon
 - Work involving the design of a multi-modal agent which interfaces with optimization algorithms.

Diffusion Models for Rapid 3DIC Thermal Modeling

Supervised by Prof. Franzon

• Work involving the design of a conditional diffusion model which estimates the thermal properties of 3DICs.

RESEARCH TALKS AND CLINICS

- MLCAD talk on Large Reasoning Models for 3D Hard Macro Placement. 09/11/2024
- Qualcomm Innovation Fellowship invited talk on Large Reasoning Models for 3D Floorplanning. 07/30/2024
- LLM-Aided Design talk on Low-Rank Knowledge Distillation for LLMs. 06/29/2024
- MIT-LL clinic on Axon centerline detection using 3D-UNets. 05/18/2024
- BioInspired Processing talk on Optimal Brain Dissection. 11/29/2023
- MLCAD talk on Siamese-Graph Neural Networks for Circuit Graph Isomorphism Detection. 09/12/2023

PROFESSIONAL SERVICE

- Mentor to four Ph.D students.
- Reviewer for Neurips Workshop on Foundation Models for Science (FM4Science 2024).
- Contributor to Machine Learning Systems: Principles and Practices of Engineering Artificially Intelligent Systems, the textbook used for Harvard's CS249R (a course on TinyML).
- Contributor to Tensorflow Probability, SciKit Learn, and Deep Robust python libraries.
- Director of NC State Community Affairs for ECE Graduate Students Association (2021-2022).
- Organized NC State ECE Research Symposium January 28, 2022.
- Organized NC State TEDx Talk with Analog Devices, March 7, 2022.
- Member of UT Austin IEEE Robotics and Automation Society.
- Each year, incoming ECE Ph.D. students at NCSU watch a video titled *How to Succeed Doing a Ph.D in ECE*. The presentation includes me as an example of a Ph.D. student navigating the program successfully.
- Director of Student Affairs for UT Austin Planet Longhorn (International Students Org) (2020-2021).

TEACHING	
ECE 220 Analytical Foundations of ECE	Raleigh, NC
• Teaching Assistant for North Carolina State University	Aug 2022 - May 2023
$\circ~$ Taught a sophomore-level course on circuit theory, control, differential equations and	communication systems.
• Supervised weekly labs which introduced students to MATLAB.	
• Graded homework and exams.	
• Gave career advice to aspiring engineers.	
ECE 301 Linear Systems and Signals	Raleigh, NC
• Teaching Assistant for North Carolina State University	Aug 2021 - May 2022
• Taught a junior level course on linear systems and signals.	
• Wrote exams and lead recitation twice a week.	
• Taught students introductory machine learning in MATLAB.	
• Graded homework and exams.	
• Received outstanding feedback from my students.	
Signal Processing and Data Science Tutor	Austin, TX
• Varsity Tutors	Feb 2021 - July 2021
• Tutored undergraduates in data science, linear systems and signals	
• Taught introductory classes in Java and Python	

• 4.9/5.0 stars (top 10% of all tutors on platform)

TECHNICAL SKILLS

- Very experienced with PyTorch and TensorFlow.
- Daily usage of Python. Skilled with Java.
- Seasoned with libraries such as OpenCV, PIL, sci-kit-image, Gym and PyBullet.
- Skilled at digital {tomography, image, video, voxel} processing. Strong background in applied reinforcement learning, pattern recognition, detection/estimation theory, Bayesian optimization and large scale self-supervised learning.
- Growing experience in stochastic geometry, algebraic topology and inverse RL.